35 lines
1 KiB
Python
35 lines
1 KiB
Python
|
|
import pprint
|
|
|
|
from files.classes.volunteer_janitor import VolunteerJanitorRecord
|
|
|
|
from files.__main__ import app, db_session
|
|
|
|
@app.cli.command('volunteer_janitor_histogram')
|
|
def volunteer_janitor_histogram_cmd():
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
|
|
result_set = db_session().query(VolunteerJanitorRecord.recorded_utc).all()
|
|
|
|
# convert the result into a pandas DataFrame
|
|
df = pd.DataFrame(result_set, columns=['recorded_utc'])
|
|
|
|
# convert the date column to datetime
|
|
df['recorded_utc'] = pd.to_datetime(df['recorded_utc'])
|
|
|
|
# set 'recorded_utc' as the index of the DataFrame
|
|
df.set_index('recorded_utc', inplace=True)
|
|
|
|
# resample the data to daily frequency
|
|
df_resampled = df.resample('D').size()
|
|
|
|
# plot the resampled DataFrame
|
|
df_resampled.plot(kind='line')
|
|
plt.title('Density of Dates over Time')
|
|
plt.xlabel('Date')
|
|
plt.ylabel('Count')
|
|
|
|
# save the figure in SVG format
|
|
plt.savefig('output.svg', format='svg')
|
|
print(len(result_set))
|